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a b s t r a c t 

Background and Objective: The COVID-19 can cause severe pneumonia and is estimated to have a high 

impact on the healthcare system. Early diagnosis is crucial for correct treatment in order to possibly 

reduce the stress in the healthcare system. The standard image diagnosis tests for pneumonia are chest 

X-ray (CXR) and computed tomography (CT) scan. Although CT scan is the gold standard, CXR are still 

useful because it is cheaper, faster and more widespread. This study aims to identify pneumonia caused 

by COVID-19 from other types and also healthy lungs using only CXR images. 

Methods: In order to achieve the objectives, we have proposed a classification schema considering the 

following perspectives: i) a multi-class classification; ii) hierarchical classification, since pneumonia can 

be structured as a hierarchy. Given the natural data imbalance in this domain, we also proposed the use 

of resampling algorithms in the schema in order to re-balance the classes distribution. We observed that, 

texture is one of the main visual attributes of CXR images, our classification schema extract features using 

some well-known texture descriptors and also using a pre-trained CNN model. We also explored early 

and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors 

and base classifiers at once. 

To evaluate the approach, we composed a database, named RYDLS-20, containing CXR images of pneu- 

monia caused by different pathogens as well as CXR images of healthy lungs. The classes distribution 

follows a real-world scenario in which some pathogens are more common than others. 

Results: The proposed approach tested in RYDLS-20 achieved a macro-avg F1-Score of 0.65 using a multi- 

class approach and a F1-Score of 0.89 for the COVID-19 identification in the hierarchical classification 

scenario. 

Conclusions: As far as we know, the top identification rate obtained in this paper is the best nominal 

rate obtained for COVID-19 identification in an unbalanced environment with more than three classes. We 

must also highlight the novel proposed hierarchical classification approach for this task, which considers 

the types of pneumonia caused by the different pathogens and lead us to the best COVID-19 recognition 

rate obtained here. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The most recent novel coronavirus, officially named Severe

cute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causes

he Coronavirus Disease 2019 (COVID-19) [1] . The COVID-19 can
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ause illness to the respiratory system, fever and cough and in

ome extreme cases can lead to severe pneumonia [2] . Pneumo-

ia is an infection that causes inflammation primarily in the lungs’

ir sacs responsible for the oxygen exchange [2] . 

Pneumonia can be caused by other pathogens besides SARS-

oV-2, such as bacterias, fungi and other viruses. Several char-

cteristics can influence its severity: weak or impaired immune

ystem, chronic diseases like asthma or bronchitis, elderly people

https://doi.org/10.1016/j.cmpb.2020.105532
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2020.105532&domain=pdf
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and smoking. The treatment depends on the organism responsible

for the infection, but usually requires antibiotics, cough medicine,

fever reducer and pain reliever. Depending on the symptoms, the

patient may need to be hospitalized; in severe cases the patient

must be admitted into an intensive care unit (ICU) to use a me-

chanical ventilator to help breathing [3] . 

The COVID-19 pandemic can be considered severe due to its

high transmissibility and seriousness [4] . The impact in the health-

care system is also high due to the amount of people that needs

ICU admission and mechanical ventilators for long periods [5] . In

this scenario, early diagnosis is crucial for correct treatment to pos-

sibly reduce the stress in the healthcare system. In this context,

artificial intelligence (AI) based solutions can provide a cheap and

accurate diagnosis for COVID-19 and other types of pneumonia. 

The standard image diagnosis tests for pneumonia are chest X-

ray (CXR) and computed tomography (CT) scan. The CXR is the pri-

mary radiographic exam to evaluate pneumonia, but it not as pre-

cise as the CT scan and has higher misdiagnosis rates. Nevertheless,

the CXR is still useful because it is cheaper, faster, expose the pa-

tient to less radiation and is more widespread than CT scan [6,7] .

The task of pneumonia identification is not easy, the professional

reviewing the CXR needs to look for white patches in the lungs,

the white patches are the lungs’ air sacs filled with pus or water.

However, these white patches can also be confused with tubercu-

losis or bronchitis, for example. 

In this study, we aim to explore the identification of different

types of pneumonia caused by multiple pathogens using only CXR

images. Despite the CT scan being the gold standard for the pneu-

monia diagnosis, we focused only on CXR images due to its re-

duced cost, fast result and its general availability, since the CT scan

machines are still scarse and costly. Specifically, we considered

pneumonia caused by viruses (COVID-19, SARS, MERS and Vari-

cella), bacteria (Streptococcus) and fungi (Pneumocystis). Moreover,

because of the recent pandemic which is ravaging the world, the

main focus of this work is the COVID-19 pneumonia, and our prin-

cipal goal is to reach the best possible identification rate for it

among other types of pneumonia and healthy lungs. To support

that, we have taken into account two perspectives in the results’

evaluation: first, we considered all classes mentioned above and

summarized the results using a macro-avg F1-Score; second, we

considered only the COVID-19 class and summarized the results

using F1-Score. 

In order to achieve that, we composed a database, named

RYDLS-20, using CXR images from the open source GitHub repos-

itory shared by Dr. Joseph Cohen [8] , images from the Radiopedia

encyclopedia 1 and healthy CXR images from the NIH dataset, also

known as Chest X-ray14 [9] . The distribution of classes reflect a

real world scenario in which healthy cases are the majority, fol-

lowed by viral pneumonia, bacterial and fungi pneumonia being

the least frequent, in this order. The RYDLS-20 database was made

available also as a contribution of this work. 

Even though, our main goal is to identify COVID-19 pneumonia,

we setup the problem considering two different scenarios. In the

first one, we address it as a multi-class problem, aiming at classi-

fying different types of pneumonia (i.e. flat classification). In this

way, each CXR image has a single label associated with it. In the

second scenario, we address the problem as a hierarchical classifi-

cation problem, since we can structure the different kinds of pneu-

monia based on the kind of pathogens that caused it [10] . To lever-

age that, we conducted the analysis using both flat and hierarchical

classification methods. 

Furthermore, the CXR image dataset used in this work was

built aiming to reflect the real world distribution of different
1 https://radiopaedia.org/articles/pneumonia 

b  

b  

d  
ypes of CXR, in which some types of pneumonia are much more

ikely than others, and even pneumonia itself is less frequent than

ealthy cases. Thus, the database is very imbalanced. In this situ-

tion, it is common that the classification algorithm increases the

ikelihood of the most frequent classes and reduces the likelihood

f the least frequent classes [11] . In order to deal with this, we ap-

lied some well-known resampling techniques in order to balance

f the classes distribution. 

By analyzing CXR images, we can observe that texture is one

f the main visual attributes present in those images. So, we de-

ided to extract features from CXR images by exploring some pop-

lar texture descriptors, and also a pre-trained CNN model, not

o neglect the power of representation learning approaches. Thus,

or the flat classification, using the extracted features, we applied

ome well-known multi-class classification algorithms. In parallel,

e also applied a hierarchical classification approach on the same

et of extracted features. It is worth mentioning that we also tried

 pure deep learning (end-to-end CNN) approach, however the re-

ults were very bad, probably due to the small sample size and the

lass imbalance. 

Since multiple features were extracted using different texture

escriptions, we also experimented different fusion techniques to

ake advantage of each descriptor strength, both on early and late

usion modes [12] . In early fusion, the features extracted from dif-

erent texture descriptors were combined before training and test.

n late fusion, each set of features is trained individually, and the

lgorithm predictions are combined after the training. 

The paper is organized as follows. Section 2 presents some

heoretical background about the concepts used in the study. Af-

er that, Section 3 discuss some related works and how they

ere used in our problem, when it is the case. Subsequently,

ection 4 details our proposed methodology. Section 5 presents

etails about our experimental setup. Section 6 describes the ob-

ained results. Later, Section 7 presents a discussion on the ob-

ained results. Finally, Section 8 concludes the current study and

escribes some possibilities for future works. 

. Theoretical background 

In this section we present concepts regarding the pneumonia

isease and the COVID-19 pandemic, flat and hierarchical clas-

ification and where they converge in our work. Besides, we

lso present important background concerning data imbalanceness,

ow it impacts our work and how to deal with it. 

.1. COVID-19 Pandemic and pneumonia disease 

The COVID-19 outbreak was first reported in Wuhan, China at

he end of 2019, it spread quickly around the World in a matter

f months. The evidence points to an exponential growth in the

umber of cases, as of right now there are more than 2 million

onfirmed cases worldwide [1] . 

The epidemiological characteristics of COVID-19 are still under

eavy investigation. The evidence so far shows that approximately

0% of patients are in mild conditions (some are even asymp-

omatic) and 20% are in serious or critical conditions. Moreover,

round 10% need to be admitted into an ICU unit to use mechani-

al ventilators. The fatality rate seems to be 2%, but some special-

sts estimated it to be lower around 0.5% [13,14] . The ICU admis-

ion is that main concern since there are a limited number of units

vailable. 

One of main complications caused by COVID-19 is pneumonia.

neumonia is an infection of the portion of the lung responsi-

le for the gas transfer (the alveoli, alveolar ducts and respiratory

ronchioles), called pulmonary parenchyma, that can be caused by

ifferent or ganisms, such as viruses, bacteria or fungi. Pneumonia

https://radiopaedia.org/articles/pneumonia


R.M. Pereira, D. Bertolini and L.O. Teixeira et al. / Computer Methods and Programs in Biomedicine 194 (2020) 105532 3 

c  

d

 

a  

a  

a  

k  

c

 

a  

s  

e  

t  

c  

t  

t

 

fi  

a  

o  

w  

c

2

 

n  

t  

c  

w  

c  

m

 

o  

f  

c  

p  

s  

p

 

p  

o  

t  

o  

m  

t

 

o  

t  

i  

n  

t  

n  

a  

f  

c  

t  

P

 

t  

r  

a  

a  

fi  

G  

b  

Fig. 1. The hierarchical class structure of pneumonia caused by micro-organisms. 
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annot be classified as a single disease, but rather as a group of

ifferent inf ections with different characteristics [15] . 

Given that, pneumonia is considered a group of diseases, the di-

gnosis for each is also different. However, radiologic images, such

s CXR and CT scan, are commonly used as one of the first ex-

ms to diagnose pneumonia of any kind. This happens because all

inds of pneumonia causes inflammation in the lungs, and that is

aptured by the radiologic images [16] . 

Both CXR and CT scan are radiologic images that can be used

iming at identifying the pneumonia inflammation. CT scan is con-

idered the gold standard over CXR since it is more precise. How-

ver, it has some drawbacks: it is more expensive, slower to be ob-

ained and to an extent still rare [6] . Some CT scan machines can

ost up to millions of dollars, and X-ray machines cost roughly ten

imes less than that. So, there are still reasons to use CXR images

o diagnosis pneumonia. 

Following that, pneumonia detection in CXR images can be dif-

cult even for experienced radiologists. The inflammation appear

s white patches in the lungs, they can be vague, overlapped with

ther diseases (asthma for example) and can even be confused

ith benign patches. In this context, artificial intelligence solutions

an be very useful to aid the diagnosis. 

.2. Flat and hierarchical classification 

When we talk about flat classification we are referring to bi-

ary, multi-class and multi-label classification problems. While in

he binary classification problems there are only two different

lasses, in the multi-class problems there are multiple classes, but

ith only one output per sample. Moreover, in the multi-label

lassification problems, each instance may be associated to one or

ore labels. 

Considering the described classification contexts, the problem

f identifying types of pneumonia based on features extracted

rom CXR images can be naturally casted as multi-class classifi-

ation problem, since we have one label associated to each sam-

le. However, if we look at this same problem from another per-

pective, we may conclude that there is a hierarchy between the

athogens that causes pneumonia. 

Hierarchical Classification is a particular type of classification

roblem, in which the output of the learning process is defined

ver a specific class taxonomy. According to Silla et al. [10] , this

axonomy can be considered a structured tree hierarchy defined

ver a partially order set ( C , ≺), where C is a finite set that enu-

erates all class concepts in the application domain, and the rela-

ion ≺ represents a “IS-A” relationship. 

Fig. 1 shows how the types of pneumonia caused by micro-

rganisms can be hierarchically organized. We may observe that

here is a total of fourteen labels, in which seven are leaf nodes,

.e., which are the actual type of pneumonia. There are pneumo-

ia caused by micro-organisms Acelullar/Virus and Cellular. By its

urn, the Acelullar/Virus pneumonia can be subdivided into Coro-

avirus and Varicella, and the Celullar into Bacteria/Streptococcus

nd Fungus/Pneumocystis. Furthermore, the Coronavirus can be

urther subcategorized into COVID-19, SARS and MERS. This hierar-

hy is based on the structure developed in 10th revision of the In-

ernational Statistical Classification of Diseases and Related Health

roblems (ICD-10) [17] . 

According to Silla and Freitas [10] , there are different ways to

ackle a hierarchical classification problem regarding the catego-

ization of the classification process. In the Local Classifiers (LC)

pproach, the hierarchy is partially taken into account by using

 local information perspective, creating binary/multi-class classi-

ers to deal with the problem in a local way. Moreover, in the

lobal Classifiers (GC) approach, a single classification model is

uilt from the training data, taking into account the class hierar-
hy as a whole during the classification process. As we want the

lassifier to aim into the whole classes hierarchy in order to find

mportant information between the pneumonia labels, in this pa-

er we have used a GC approach to deal with the hierarchical clas-

ification problem. 

.3. Imbalanceness data and resampling 

Many researchers face class imbalance distribution issues,

ostly when working with real world datasets. Usually the clas-

ifiers are focused in the minimization of the global error rate and

hus, when dealing with imbalanced datasets, the algorithms tend

o benefit the most frequent classes (known as majority classes).

evertheless, depending on the problem, the main interest of the

ask could be on properly labeling the rare patterns, i.e., the less

requent classes (known as minority ctlasses), such as in credit

ard fraud detection [18] and medical image classification [19–21] . 

Following this reasoning, we may include the task being inves-

igated in this work into the list of naturally imbalanced problems.

n a real world scenario, the identification of types of pneumonia

n CXR images may be also considered as an imbalanced learning

ask because there are more people with healthy lungs than people

ith lungs affected by the pneumonia disease. Moreover, regarding

he number of people with the different types of pneumonia, there

s also the imbalanceness factor. As the COVID-19 disease reached a

andemic status in 2020 [1] , the number of people with pneumo-

ia caused by COVID-19 is much higher than the number of people

ith pneumonia caused by other pathogens such as SARS, MERS,

aricella, Streptococcus and Pneumocystis. 

In order to deal with the imbalancess issue in classification

atasets, several methods have been proposed in the literature

22] and data level solutions are the most well-known and used

echniques. The main objective of these techniques is to re-balance

he classes distribution by resampling the dataset to diminish the

ffect of the class imbalanceness, i.e., preprocessing the dataset be-

ore the training phase. 

The resampling methods can be subdivided in two categories:

versampling and undersampling. Both are used to adjust the class

istribution of a dataset, i.e., the ratio between the different classes

n the dataset. While in an undersampling method some instances

rom the majority class are removed in order to balance the sam-

les distribution, in an oversampling technique, some instances

rom the minority class are duplicated or synthetically created in

rder to balance the classes’ distribution. Fig. 2 shows three differ-

nt classes distribution in a typical binary dataset: (1) the original

nbalanced dataset; (2) the resulting dataset after applying a un-

ersampling over the majority class (Resampled dataset A); (3) the
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Table 1 

Summary of classic binary resampling algorithms. 

Algorithm Main Idea Strategy Reference 

ADASYN Creates synthetic samples for the minority class adaptively. Oversampling [ 25 ] 

SMOTE Creates synthetic samples by combining the existing ones. Oversampling [ 26 ] 

SMOTE-B1/B2 Creates synthetic samples considering the borderline between the classes. Oversampling [ 27 ] 

AllKNN Removes samples in which a kNN algorithm misclassifies them. Undersampling [ 28 ] 

ENN/RENN Removes samples in which its label differs from the most of its nearest neighbors. Undersampling [ 28 ] 

TomekLinks Removes samples which are nearest neighbors but has different labels. Undersampling [ 28 ] 

SMOTE + TL Apply SMOTE and TomekLink algorithms. Hybrid [29] 

Fig. 2. Different classes distribution in a binary labeled dataset. 
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resulting dataset after applying a oversampling over the minority

class (Resampled dataset B). 

Although the resampling solutions were first defined and im-

plemented for datasets with binary class distribution, we may ap-

ply them to multi-class imbalanceness problems as well. Accord-

ing to Wang and Yao [11] , in order to apply these solutions in

multi-class scenarios, most attention in the literature was devoted

to class decomposition, i.e., the conversion of a multi-class problem

into a set of binary class sub-problems. Two common decomposing

schemas are: The One-Against-One (O-A-O) and the One-Against-

ll (O- A- A). While the O- A-O technique, first used in [23] , proposes

to train a classifier for each possible pair of classes, ignoring the

examples that do not belong to the related classes, the O-A-A ap-

proach, introduced by Rifkin and Klautau [24] , builds a single clas-

sifier for each classe of the problem, considering the examples of

the current class as positives and the remaining instances as neg-

atives. 

In Table 1 we present a brief review of the classic binary resam-

pling algorithms, describing the main idea, strategy used, i.e., over-

sampling, undersampling or both (hybrid), and the paper in which

it was proposed. In order to give a visual idea of the resampling

techniques, Fig. 3 shows an example dataset before and after ap-

plying the resampling methods. The example dataset is composed

of two labels (blue and red) and two features (represented by axis

y and x). While (a) shows the original datasets, (b)-(j) presents the

resulting dataset after applying each one of the resampling tech-

niques. 

3. Related works 

In this section, we describe some remarkable works presented

in the literature which address one of the following topics, and

that have directly influenced the development of this work: tex-

ture descriptors in medical images, pneumonia detection in CXR
mages, and COVID-19 pneumonia detection on CXR or CT scan

mages using artificial intelligence. The works will be described

redominantly in chronological order, and we try to highlight the

ain facts related to each of them, such as: the feature extrac-

ion step, whether it is performed using handcrafted features or

utomated feature learning, classification model, database used in

he experiments, type of image used in the experiments (CXR or

T), and the types of pneumonia investigated (COVID-19 among

thers). 

The first work we are going to describe was presented by Nanni

t al. [30] in 2010. In that work, the authors compared a series

f handcrafted texture descriptors derived from the Local Binary

attern (LBP), considering their use specifically in medical appli-

ations. The variants of LBP evaluated were Local Ternary Pattern

LTP), Eliptical Binary Pattern (EBP), and Elongated Quinary Pattern

EQP). These descriptors were evaluated on three different medi-

al applications: i) pain expression detection, starting from facial

mages of the COPE database [31] , taken from 26 neonates cate-

orized into five different classes (i.e. rest, cry, air stimulus, fric-

ion, and pain); ii) Cell phenotype image classification using the

D–Hela dataset [32] , a dataset composed of 862 single-cell images

istributed into ten different classes (i.e. Actin Filaments, Endsome,

ndoplasmic Reticulum, Golgi Giantin, Golgi GPP, Lysosome, Micro-

ubules, Mitochondria, Nucleolus, and Nucleus); and iii) Pap smear

Papanikolaou test) aiming to diagnose cervical cancer. They used

 dataset composed of 917 images collected at the Herlev Univer-

ity Hospital [33] using digital camera and microscope. The images

ere labeled according to seven different classes, being three of

hem related to normal states, and four of them related to ab-

ormal states. After a comprehensive set of experiments using the

upport Vector Machine (SVM) classifier, the authors verified that

he EQP descriptor, or ensembles created using variations of EQP

erformed better for all the addressed tasks. For this reason, we

ecided to investigate the performance of EQP in the experiments

ccomplished in this work. 

Still in 2010, Parveen and Sthik [34] addressed pneumonia de-

ection in CXR images. The authors suggested that the feature ex-

raction could be properly made, at that time, by using Discrete

avelet Transform (DWT), Wavelet Frame Transform (WFT), or

avelet Packet Transform (WPT), followed by the use of fuzzy c-

eans classification learning algorithm. Looking backward, we can

asily note that the feature extraction was still strongly coupled up

o the handcrafted perspective. However, the effort s made by the

uthors aiming at find useful descriptors to properly capture the

nformation about different kinds of lung infections is worth men-

ioning. 

Scalco and Rizzi [35] performed texture analysis of medical im-

ges for radiotherapy applications. In this sense, the authors ap-

lied texture analysis as a mathematical technique to describe the

rey-level patterns of an image aiming at characterize tumour het-

rogeneity. They also carried out a review of the literature on tex-

ure analysis on the context of radiotherapy, particularly focusing

n tumour and tissue response to radiations. In conclusion, the au-

hors point out that texture analysis may help to improve the char-
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Fig. 3. Example of datasets before and after applying the resampling techniques. 
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2 Hounsfield unit, more details can be found in https://en.wikipedia.org/wiki/ 
cterization of intratumour heterogeneity, favouring the prediction

f the clinical outcome. Some important open issues concerning

he interpretation of radiological images have been raised in that

ork. Among these issues, we can highlight the lack of a proper

iological interpretation of the models that could predict the tis-

ue response to radiation. 

Although the COVID-19 outbreak is a quite recent event, it has

een attracting a lot of attention from the society and also from

he image analysis research community in particular, in view of the

rgency of this matter. In this sense, Zhou et al. [36] have just pub-

ished a study describing a deep learning model for differentiating

ovel coronavirus pneumonia (NCP) and influenza pneumonia in

hest computed tomography (CT) images. The work is one of the

ioneers works that has brought to light some scientific evidences

oncerning the challenging pandemic which has been dramatically

ffecting the world. By this way, it can be taken as an important

eference, mainly if we take into account that the study was devel-

ped by scientists from the country from where the outbreak has

merged. 

The first point to be highlighted regarding that work is that, dif-

erently from the study presented in this work, Zhou et al. adopted

T images in their study. It is particularly important to emphasize

his difference, because on the one hand, CT images are much bet-

er than CXR images due to its better capacity to show details from

he pulmonary infection. On the other hand, CXR images are much

heaper and can be obtained in much less time, as already pointed

n the introduction of this paper. 

In the experimental protocol, Zhou et al. composed the training

et using CT images scanned from 35 confirmed NCP patients, en-

H

olled with 1138 suspected patients. Among these images, it was

ncluded images from 361 confirmed viral pneumonia patients, be-

ng 156 of them influenza pneumonia patients. In summary, the

tudy showed that most of the NCP lesions (96.6%) are larger than

 cm, and for 76.6% of the lesions the intensity was below -500

u 

2 , showing that these lesions have less consolidation than those

rovoked by influenza, whose nodes size ranges from 5 to 10 mm.

egarding the classification results, the deep model created ob-

ained a rate above 0.93 for distinguishing between NCP and in-

uenza considering the AUROC metric. 

The authors also handle the transferability problem, aiming to

void that the well-trained deep learning model performs poorly

n data from unseen sources. In this way, Zhou et al. proposed

 novel training schema, which they call Trinary schema. By this

ay, the model is supposed to better learn device independent fea-

ures. The Trinary schema performed better than the Plain schema

ith specialists regarding the device-independence and consis-

ence, achieving a F1 score of 0.847, while the Plain schema ob-

ained 0.774, specialists 0.785, and residents 0.644. 

Li et al. [37] also addressed COVID-19 identification on chest

T images using artificial intelligence techniques. For this purpose,

he authors used a database composed of CT images collected from

OVID-19 patients, other viral pneumonia patients, and also from

atients not diagnosed with pneumonia. The images were provided

y six Chinese hospitals, and the created database is composed of

969 images on the training set, being 400 from COVID-19 pa-
ounsfield _ scale 

https://en.wikipedia.org/wiki/Hounsfield_scale
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tients, 1396 from other viral pneumonia patients, and 1173 from

non-pneumonia patients. In addition, it was created an indepen-

dent test set with images from 68 COVID-19 patients, 155 other

viral pneumonia patients, and 130 non-pneumonia patients, total-

ing 353 CT images. 

A 3D deep learning model, which the authors call COVNet, was

created using the ResNet-50 [38] as a backbone. The model is fed

by a series of CT slices and generates a classification prediction

for the CT image considering the following three classes: COVID-

19, other viral pneumonia, and non-pneumonia. After experimen-

tation, the authors reported an AUROC value of 0.96 obtained for

COVID-19, and 0.95 for other viral pneumonia. 

Narin et al. [39] evaluated COVID-19 detection on CXR images

using three different deep neural network models (i.e. ResNet50,

Inception-V3, and InceptionResNetV2). The dataset was composed

using fifty COVID-19 patients images taken from the open source

GitHub repository shared by Dr. Joseph Cohen [8] , and more fifty

healthy patients images from Kaggle repository “Chest X-Ray Im-

ages (Pneumonia)”3 . The results were obtained using five-fold cross

validation, and they are as follows: 98% of accuracy using the

ResNet50 model, 97% of accuracy using the Inception-V3 model,

and 87% of accuracy for Inception-ResNetV2. 

Gozes et al. [40] addressed COVID-19 detection and patient

monitoring using deep learning models on CT images. By patient

monitoring, the authors mean the evolution of the disease in each

patient over time using a 3D volume, generating what they call

“Corona score”. The authors claim that the work is the first one de-

veloped to detect, characterize and track the progression of COVID-

19. The study was developed using images taken from 157 patients,

from China and USA. The authors make use of robust 2D and 3D

deep learning models, they also modified and adapted existing

AI models, combining the results with clinical understanding. The

classification results, aiming at differentiate coronavirus images vs.

non-coronavirus images obtained 0.996 of AUROC. Gozes et al. also

claim that they successfully performed quantification and tracking

of the disease burden. 

Wang and Wong [41] created the COVID-Net, an open source

deep neural network specially created aiming to detect COVID-

19 on chest radiography images. To accomplish that, the authors

curated the COVIDx, a dataset created exclusively to support the

COVID-Net experimentation. The dataset is composed of 16,756

chest radiography images from 13,645 different patients taken

from two distinct repositories. The authors describe in details the

COVID-Net architecture design, and they also explain how one can

get the dataset. 

The initial network design prototype was created based on

human-driven design principles and best practices, combined with

machine-driven design exploration to produce the network archi-

tecture. The authors claim that the developed model obtained a

good trade off between accuracy and computational complexity. In

terms of recognition performance, they obtained 92.4% of accuracy

for the COVIDx test dataset as a whole. They also reported the

following sensitivity rate for each kind of infection/non-infection

image: 95% for “normal” patients, 91% for non-COVID-19 infection,

and 80% for COVID-19 infection. More details regarding the results,

the created model, and the dataset can be found in [41] . 

Khan et al. [42] designed the CoroNet, a Convolutional Neural

Network (CNN) for detection of COVID-19 from CXR images. The

CNN model is based in Xception (Extreme Inception) and contains

71 layers trained on the ImageNet dataset. The author also de-

veloped a balanced dataset to support and test their neural net-

work configuration, which is composed of 310 normal, 330 bacte-

rial, 327 viral and 284 COVID-19 resized CXR images. According to
3 https://www.kaggle.com/paultimothymooney/chest- xray- pneumonia 

w  

s  

h

he authors, the proposed CoroNet achieved an average accuracy

f 0.87 and a F1-Score of 0.93 for the COVID-19 identification. We

an highlight the following main differences between their work

nd ours: (i) Their dataset do not consider an unbalanced realis-

ic scenario, thus they do not use resampling techniques; (ii) Their

ataset have only four classes and it is not publicly available for

ownload; (iii) They did not use both handcraft and representa-

ion learning features. (iv) They did not investigate a hierarchical

lassification approach. 

Ozturk et al. [43] proposed a deep model for early detec-

ion of COVID-19 cases using X-ray images. The author accom-

lished the classification both in binary (COVID vs. No-findings)

nd multi-class (COVID vs. No-Findings vs. Pneumonia) modes. The

reated model achieved an accuracy of 98.08% for binary classes

nd 87.02% for multi-class cases. The model setup was built the

arkNet model as a classifier YOLO object detection system. The

uthors made the codes available and they claim that the it can be

sed to create a tool to assist radiologists in validating their initial

creening. 

It is important to mention that as the identification of COVID-

9 in CXR images is a hot topic nowadays due to the growing pan-

emic, it is unfeasible to represent the real state-of-the-art for this

ask, since there are new works emerging every day. However, we

ay observe that most of these works are aiming to investigate

onfigurations for Deep Neural Networks, which is already some-

ow different from our proposal. 

Table 2 presents a summary of the studies described in this sec-

ion, focusing on their most important characteristics. The main

urpose of this table is to provide a practical way to find some

mportant information regarding those works at a glance. 

. Proposed method 

As aforementioned in this paper, we focus on exploring data

rom CXR images considering different feature extraction meth-

ds to classify the different types of pneumonia and, conse-

uently, identify COVID-19 among pneumonia caused by other

icro-organisms. Thus, we chose specific approaches that could

ead us to obtain the best benefit in terms of the classification per-

ormance for these specific classes. 

To better understand the proposal of this work, Fig. 4 shows a

eneral overview for the classification approach, considering: The

eature extraction process (Phase 1), the Early Fusion technique

Phase 2), the data resampling (Phase 3), the classification and

eneration of results for the multi-class and hierarchical scenarios

Phase 4.1 for Early Fusion and Phase 4.2 for Late Fusion). In Fig. 4 ,

hase 3 is circulated with a dashed rounded rectangle because it

s an optional phase, since the original features without resampling

an also be used to generate the predictions. 

It is important to inform that our method does not involve an

utomatic preprocessing step aiming to standardize the images be-

ore the feature extraction, although a manual crop to exclude un-

esirable patterns has been carried out. Thus, we are dealing with

XR images with different sizes. More information concerning the

ataset will be described in Section 5.1 . In the following subsec-

ions we describe in details each one of the Phases present in

ig. 4 . 

.1. Feature extraction (Phase 1) 

By analyzing CXR images, we can observe that texture is prob-

bly the main visual attribute we can find inside them. Thus,

e have explored some well-successful texture descriptors de-

cribed in the literature, both considering handcrafted and non-

andcrafted approaches. 

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Table 2 

Summary of the works described in this section. 

Reference Image Type Database/applications Computational/ML ∗ techniques 

Nanni et al. [30] Neonatal facial, 

fluorescence 

microscope and smear 

cells images 

Three databases:Neonatal facial images,2D-HeLa dataset and Pap 

smear datasets 

LBP, LPQ, EQP, LTP, EBP, ILBP CSLBP 

and SVM 

Parveen and Sthik [34] CXR Pneumonia detection DWT, WFT, WPT and fuzzy C-means 

clustering 

Scalco and Rizzi [35] CT, PET and MR Tumour heterogeneity characterization Grey-level histogram, GLCM, NGTDM, 

GLRLM and GLSZM 

Zhou et al. [36] CT NCP/influenza differentiation images from 1138 suspected patients, 

being 361 viral pneumonia, 35 confirmed NCP and 156 confirmed 

influenza 

YOLOv3, VGGNet and AlexNet 

Li et al. [37] CT 2969 images obtained in Chinese hospitals 400 NCP images 1396 

other viral pneumonia and 1173 non-pneumonia 

COVNet deep learning model based on 

ResNet-50 

Narin et al. [39] CT NCP identification on a dataset composed of x-ray images from 50 

healthy patients and 50 COVID-19 patients 

ResNet50, InceptionV3 and 

Inception-ResNetV2 

Gozes et al. [40] CT NCP detection and analysis using images taken from 157 patients 2D and 3D deep learning models, and 

other AI models 

Wang and Wong [41] CXR NCP detection using 16,756 images taken from 13,645 patients COVID-Net a deep neural network 

created to detect NCP 

Khan et al. [42] CXR NCP detection using 1251 images from four classes CoroNet a CNN created to detect NCP 

Ozturk et al. [43] CXR NCP detection using 500 pneumonia images and 500 non-pneumonia 

images 

DarkNet and YOLO 

∗ Machine Learning. 

Fig. 4. The proposed classification schema for the COVID-19 identification in CXR images. 
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In the last decade, many researchers began using non-

andcrafted features to describe patterns aiming to address clas-

ification problems. This kind of feature became a strong trend,

hanks to the fact that they can be easily obtained, since it is not

ecessary to perform the feature engineering work, which in gen-

ral is a laborious task and may require a refined knowledge re-

arding the problem classes, and also regarding the techniques that

upport handcrafted descriptors. 

Even though the non-handcrafted descriptors have some clear

dvantages, we should remember that handcrafted features have

eculiarities that can make them still quite useful to properly ad-

ress many classification tasks. One of these advantages lies in the

act that handcrafted features tend to capture the patterns related

o the problem, so to say, in a more stable fashion, due to the fact

hat these techniques often work in a deterministic way. Moreover,

 more precise understanding regarding the patterns captured by

andcrafted features from the images tends to be more feasible

han when non-handcrafted features are used. 
b  

a  
Anyway, in this work we moved effort s towards the employ-

ent of both these categories for feature extraction. By this way,

e can evaluate both separately and, moreover, we also carried out

everal experimental setups performing a combination of them. In

his sense, we can take advantage from the complementarity that

ay exist between both strategies used to obtain the descriptors,

nce they not necessarily make the same errors on the accomplish-

ent of a given classification task, as shown in [44] and [45] . 

In this section, we briefly describe the descriptors used in this

ork. The texture descriptors selected were chosen either be-

ause they presented good performance in general applications, or

pecifically in medical image analysis related applications. 

.1.1. Local binary pattern (LBP) 

Presented by Ojala et al. [46] , LBP is a powerful texture de-

criptor, successfully experimented in several different applications

hich involve texture classification. LBP is found by calculating a

inary pattern for the local neighborhood for each pixel of the im-

ge. The pattern has one position to each neighbor i involved in the
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calculation, and it is calculated by subtracting the values of gray

intensity of the central pixel ( g c ) from the gray intensity of each

neighbor ( g i ) to get a distance d , such a way that if d is greater

or equal to zero, that position in the binary pattern assumes the

value 1, otherwise it assumes 0, like shown in Eq. (1) . 

d = 

{
1 , i f g i − g c ≥ 0 

0 , otherwise. 
(1)

The final texture descriptor for the image corresponds to a his-

togram which counts the occurrences of the binary patterns along

the image. The number of possible binary patterns varies accord-

ing to the setup previously defined to get pixels from the neigh-

borhood, considering the neighborhood topology and number of

neighbors for example. Regardless these details, this texture de-

scriptor has been presenting impressive results on several different

application domains for more than one decade [47–49] . The de-

tails about how the patterns can be defined, and how we can set

the parameters of the neighborhood can be found in [46] . 

4.1.2. Elongated quinary patterns (EQP) 

Elongated Quinary Pattern (EQP) [30] is basically a variation of

LBP and LTP descriptors. The great difference from EQP to LBP and

LTP descriptors is that the EQP uses a quinary pattern, not binary

or ternary encoding, like LBP and LTP respectively. From a given

grayscale image, let us denote x as the central pixel using a given

topology, and u as the gray value of the neighboring pixels. In

the EQP descriptor, we can assume five different values, instead of

two or three, as proposed in the LBP and LTP respectively. Thus,

in quinary encoding the difference d is encoded using five values

according to two thresholds τ 1 and τ 2 , as described in Eq. (2) . 

d = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 , u ≥ x + τ
1 , x + τ1 ≤ u < x + τ2 

0 , x − τ1 ≥ u < x + τ1 

−1 , x − τ2 ≤ u < x − τ1 

−2 , otherwise. 

(2)

The creators of EQP evaluated different topology patterns for

the neighborhood of the central pixel, instead of considering only

the circular neighborhood, as originally done for LBP and LTP. The

elliptical topology showed better results. Moreover, the EQP proved

to be a robust descriptor for different medical image problems,

presenting results superior to other descriptors. 

4.1.3. Local directional number (LDN) 

LDN was originally experimented for the assessment of the face

recognition task [50] . This technique tries to capture the texture

structure, by encoding the information about the texture direction

in a compact way. In this sense, this descriptor is supposed to be

more discriminative than other methods. The directional informa-

tion is obtained by using a compass mask and the prominent di-

rection indices are used to encode this information. Sign-which is

also used to distinguish between similar pattern with different in-

tensity transitions. More details about this descriptor can be find

in [50] . 

4.1.4. Locally encoded transform feature histogram (LETRIST) 

The LETRIST descriptor, proposed by Song et al. [51] aims to

present a simple and efficient texture descriptor. The authors de-

scribe some important characteristics that all texture descriptor

must have: Discriminative, Invariant, Intense, Low-dimensional and

Efficient. Basically, the histogram which corresponds to the LETRIST

descriptor is based on the across feature and scale space of the im-

age. The authors describe three main steps for generating the rep-

resentation histogram. In the first step, from multiple input image

scales and using Directional Gaussian Derivative Filters, extremum

responses are computed. These extremum responses are used to
eed linear and non-linear operators to quantitatively construct a

et of transform features. This characterizes structures of local tex-

ures and their correlations with the input image. In the second

tep, the quantization is performed using various levels or binary

hreshold schemas. This step aims at greater robustness in terms of

hanges in lighting and rotation. Finally, in the third step, a joint

ross-scale coding schema is carried out. In this way, it is possible

o add discrete texture codes in a compact histogram representa-

ion. The authors describe LETRIST as a robust descriptor for differ-

nt texture classification tasks [51] . We can also point out that it

s robust to Gaussian noise, changes in scale, rotation and lighting.

n this way, LETRIST becomes a very interesting texture descriptor. 

.1.5. Binarized statistical image features (BSIF) 

Proposed by Kannala and Rahtu [52] , the BSIF texture descriptor

as initially proposed for texture classification particularly on face

ecognition tasks. The BSIF descriptor is based both on LBP and

PQ descriptors. However, the authors emphasize that BSIF uses a

chema based on statistics of natural images and not on heuris-

ics, such as the descriptors LBP and LPQ. That is, from a small set

f samples of natural images, the descriptor learns a fixed set of

lters using Independent Component Analysis (ICA). For the gen-

ration of BSIF descriptors, the value of each pixel from an input

mage M × N is transformed into a binary string. In this work,

he feature vectors generated using BSIF have 56 dimensions. An

nteresting study evaluating the robustness of 27 descriptors in

almprint recognition [53] describes that the BSIF descriptor was

mong the Top-3 best descriptors evaluated. 

.1.6. Local phase quantization (LPQ) 

Proposed by Ojansivu and Heikkilä [54] , LPQ was originally pro-

osed aiming to provide a good texture description for noised im-

ges, affected by blur. However, surprisingly LPQ has shown to be

uite effective also to describe the textural content even for images

ot affected by blur. This descriptor is constructed by taking the

oefficients that reveal the blur intensity of the image. It is done by

sing the phase of 2D Short Term Fourier Transform (STFT) over a

indow with a previously defined size, which is slid over the im-

ge. The mathematical details regarding the LPQ can be obtained

n [54] . 

.1.7. Oriented basic image features (oBIFs) 

The BIF descriptor was originally designed for texture classifi-

ation [55] , but it also performs well in other tasks [56] . Gattal

t al. [57] proposed an extension of the BIF descriptor. The main

dea is to categorize each location in the image into one of seven

ossible local symmetry classes. These types of local classes are

he following: flat, slope, dark rotational, light rotational, dark line

n light, light line on dark or saddle-like. To categorize each part

f the image, six Derivative-of-Gaussian filters are used, which is

etermined by the α parameter. The parameter ε classifies the lo-

ation probability as flat. The feature vector generated through the

BIFs descriptor has 23 dimensions. The orientations were quan-

ified at four levels (n = 4) . Newell and Griffin [56,57] propose a

hange in the oBIFs descriptor aiming to improve its performance.

n this sense, the rationale is that from two different oBIFs descrip-

ors (using different parameters σ and ε), it is possible to produce

BIFs column features with (5 n + 2) 2 dimensions. Thus, the num-

er of dimensions was increased from 23 to 484. 

.1.8. Automatically learned features with inception-V3 

In the non-handcrafted scenario, we used the Inception-V3

58] to perform feature extraction. This architecture proved to be

ore robust than other deep architectures, presenting low error
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Table 3 

Features dimensions and main parameters. 

Feature Parameters Dimensions 

LBP LBP 8,2 59 

EQP loci = ellipse 256 

LDN mSize = 3 ; mask = kirsch ; σ = 0 . 5 56 

LETRIST sigmaSet = 1 , 2 , 4 ; noNoise 413 

BSIF filter = ICAtextureFilters-11 × 11-8bit 256 

LPQ winSize = 7 256 

oBIFs α = 2 , 4 ; ε = 0 . 001 484 

Inception-V3 default parameters 2048 
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ates in the ILSVRC-2012 challenge 4 . It also also presented re-

ults better than previous architectures, such as GoogleLeNet [59] ,

ReLU [38] , and VGG [60] . We have used zero padding to fill the

mages and keep their size in the standard. After the training of the

nception-V3, we used the 2048 weights values of the penultimate

ayer of the net as feature vector. Before extracting the features,

e applied transfer learning using the weights of an Inception-V3

rained on the IMAGENET Dataset [61] . 

All codes employed in this work can be found through links in

heir respective papers. In Table 3 we describe the dimensions of

he feature vectors and also the values set to their main parame-

ers, aiming to facilitate the reproducibility by other researchers. 

.2. Early fusion (Phase 2) 

This fusion technique was first used in Snock et al. [12] and

ts main idea is to group the different features as a unique set of

eatures to feed the learner. Thus, the method generates a unique

ataset with all the chosen characteristics together. In our method,

s we are using eight different features, we have decided to use

 × 2 and 3 × 3 combinations, which lead us to a total of

ighty four different feature sets. 

.3. Resampling (Phase 3) 

This phase is a silver bullet point in the proposed classification

chema. As already described in the introduction and background

f this work, we are dealing with a naturally imbalanced prob-

em, since there are much more cases of people with healthy lungs

han with pneumonia. The use of prediction schemas that does

ot take into account this imbalance issue usually leads to bad

erformances. Moreover, the main focus of this paper is to iden-

ify the COVID-19 pneumonia among pneumonia caused by other

athogens, thus, we are aiming to increase the prediction scores

or a class belonging to the set of minority labels. 

In this situation, data augmentation might not be a good idea,

ince it can increase the overall chance of overfitting to the train-

ng data. This may happen because the operations performed in

he image, such as rotations, translations, distortions and so on,

oes not change the pneumonia inflammation white patches spots

t all. That is the main reason we decided to use resampling

echquines over data augmentation techquines. 

In order to balance the classes distribution in the training sets,

e have applied binary resampling algorithms, aided by the O-A-

 approach, as we have multi-classes datasets instead of binary.

or the hierarchical classification scenarios, we have used the same

esampling strategy, considering each leaf node label path as an

ndividual multi-class label. 

Furthermore, as described in the beginning of this section, this

s an optional phase in the proposed classification schema pre-

ented in Fig. 4 , as we can perform classification without resam-
4 http://image-net.org/challenges/LSVRC/2012/ 

t

ling to analyse and also combine the predictions in order to reach

or better performances. 

.4. Classification approaches and late fusion (Phase 4) 

As already cited in this work, given the explicit hierarchy be-

ween the pneumonia, which is caused by multiple pathogens, in

he proposed COVID-19 identification schema we propose to per-

orm flat and hierarchical classification, which we do in Phase 4.1

generation of Early Fusion results) and 4.2 (generation of Late Fu-

ion results). 

In opposition to early fusion strategies, the Late Fusion tech-

ique combines the output of the learners [12] . In general, this

ombination is achieved by calculating a only prediction involving

ll the predicted scores. 

According to Kittler et al. [62] , the Late Fusion may achieve

romising results in scenarios in which there is complementarity

etween the outputs. In these cases, the classifiers do not make

he same misclassification and thus, when combined, they can help

ach other to give the best label prediction. 

Among the most used fusion strategies, we can highlight the

ules introduced by Kittler et al. [62] and which were used in this

ork: 

• Sum rule (SUM): Corresponds to the sum of the predictions

probabilities provided by each classifier for each label. 
• Product rule (PROD): Corresponds to the product between the

predictions probabilities provided by each classifier for each la-

bel. 
• Voting rule (VOTE): We contabilize the votes of the classifiers

in the each possible label (considering the higher probability

prediction) and choose the label with the most votes. 

Another aspect regarding the predictions integration is the cri-

eria adopted to select the classifiers that will be used in the fu-

ion. In this sense, we have tested the Top-N, Best-per-Feature

nd Best-per-Classifier fusion criteria. The Top-N consists of se-

ecting the N tested scenarios (classifier + feature + resampling)

ith the best overall performance. The Best-on-Feature and Best-

n-Classifier consists of using the best results for each feature and

lassifier, respectively. In our method, we have used N = 5 in the

op-N approach. In the Best-on-Feature we have tested the com-

ination 2 × 3, 3 × 3, 4 × 4 and 5 × 5 of the best re-

ult per feature, while in the Best-on-Classifier we have made the

ame combinations, but for the best classifiers. Fig. 5 presents an

eneral schema of the late fusion technique used in this work. In

he example we show details concerning how the probabilities are

ombined to generate the result. 

. Experimental setup 

In this section we present the proposed database, algorithms,

arameters and metrics used in this paper. It is important to ob-

erve that the database, as well as the experimental scripts used in

his work are all freely available for download 

5 . 

.1. The database 

Table 4 presented the main characteristics of the proposed

atabase, which was named RYDLS-20. As it can be noted, the

atabase is composed of 1144 CXR images, with a 70/30 percentage

f split between train/test. Moreover, there are seven labels, which

an be further hierarchically organized into fourteen label paths. 

The CXR images have diffrent sized and were obtaiend from
hree different sources: 

5 https://drive.google.com/open?id=1J9I-pPtPfLRGHJ42or4pKO2QASHzLkkj 

https://drive.google.com/open?id=1J9I-pPtPfLRGHJ42or4pKO2QASHzLkkj
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Fig. 5. Example of combinations with late fusion strategies using the sum, product and voting strategies. The example dataset has M samples and L labels. 

Fig. 6. RYDLS-20 image samples. 

Table 4 

RYDLS-20 main characteristics. 

Characteristic Quantity 

Samples 1144 

Train 802 

Test 342 

Labels (Multi-Class Scenario) 7 

Label Paths (Hierarchical Scenario) 14 
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• COVID-19, SARS, Pneumocystis and Streptococcus images were

obtained in the open source GitHub repository shared by Dr.

Joseph Cohen [8] . 
• Varicella and MERS images were obtained from the Radiopedia

encyclopedia 6 . 
6 https://radiopaedia.org/articles/pneumonia 

p  

a  

d  

s  
• The Normal lung images were all obtained from NIH dataset,

also known as Chest X-ray14 [9] . 

Fig. 6 presents image examples for each class retrieved from

he RYDLS-20 database. It is worth to mentioning that we have no

urther information concerning the CXR images with regarding the

XR machine used to take the image, as well as the origin, age and

thnicity of the people whose these images belong to. 

Another worth mentioning information concerning the database

s that we have manually cut the images edges in order to avoid

he recognition of undesirable patterns. In order to confirm the

mportance of this preprocessing step, we must cite the work of

aguolo and Nanni [63] , in which the authors have made a critical

valuation regarding the combination of different databases for the

OVID-19 automatic detection from CXR. In their work, they have

ut off the lungs from the x-ray images and have experimentally

roved that a classifier can identify from which database the im-

ges came from. Thus, the authors highlight that joining different

atabases may add bias to the classification results, since the clas-

ifiers may be recognizing patterns from the origin database and

https://radiopaedia.org/articles/pneumonia
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Table 5 

RYDLS-20 samples distribution for the multi-class 

scenario. 

Label #Samples #Train #Test 

Normal 1000 700 300 

COVID-19 90 63 27 

MERS 10 7 3 

SARS 11 8 3 

Varicella 10 7 3 

Streptococcus 12 9 3 

Pneumocystis 11 8 3 
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Table 7 

Parameter settings of the classic algorithms. 

Algorithm Parameters 

KNN Number of Neighbors 3 and 5 

Distance Euclidean 

SVM Kernel RBF 

Penalty Parameter (C) 1 

Degree 3 

Gamma Scale 

Cache size 200 

Decision Function Shape Ovr 

Tolerance 0.001 

MLP Solver LBFGS 

Alpha 1e-5 

Shuffle True 

Max Iterations 500 

Learning Rate Init 0.3 

Momentum 0.2 

Hidden Layer Sizes 13 

DT Criterion Gini 

Splitter Best 

Min Samples Leaf 10 

Min Samples Split 20 

Max Leaf Nodes None 

Max Depth 10 

RF Number of Trees 10 

Class Weight Balance 

Type of Trees Same of DT 

t  

c

5

 

t  

t

5

 

u  

N  

c  

T  

t

5

 

f  

7 Available for download at https://dtai.cs.kuleuven.be/clus/ 
ot from the lung injuries. However, as we have manually cut the

mages edges in RYDLS-20, we have minimized the issue pointed

y Maguolo and Nanni [63] in our experiments. 

Table 5 presents RYDLS-20 samples distribution for the multi-

lass scenario. Though the table, it is possible to observe the ma-

or imbalanceness of the dataset between the pneumonia labels. In

ost cases, we have seven–nine samples in the training set and

nly three samples in the test dataset, which makes the learning

rocess much more difficult than in a balanced context. 

Table 6 shows RYDLS-20 samples distribution for the hierarchi-

al classification scenario. This scenario seems less imbalanced be-

ause of the internal nodes. For example, all viral pneumonia in-

tances are also categorized as “Acelluar”, so we have a total of 121

amples labeled with “Pneumonia/Acellular/Viral”. This less imbal-

nced context for the hierarchical scenario is partially true, since

he hierarchical classifier does use this criteria into account during

he learning process. 

It is important to reinforce the statement that RYDLS-20 labels

istribution reflect a real world scenario in which healthy cases are

uch more frequent (majority class), followed by viral pneumonia

mainly caused by COVID-19), bacterial and fungi pneumonia being

he least frequent, in this order. 

The experiments were conducted into a split of 70/30 between

raining and test, which means that we are using the holdout

alidation technique. It may be asked why do not use a cross-

alidation schema, since it brings robustness to the experimen-

al results. The answer to this questioning is mainly grounded in

he size of the database. As shown in this section, we are deal-

ng with a highly imbalanced database, in which half of the labels

as between 10–12 samples. Thus, if we use a 10-fold or 5-fold

ross-validation (the most recommended values by the research

ommunity), most labels will have only one or two examples into

ach fold. This division would have a high impact in the testing

hase, which may lead to misleading results regarding the evalua-
Table 6 

RYDLS-20 samples distribution for the hierarch

Label Path 

Normal 

Pneumonia 

Pneumonia/Acellular 

Pneumonia/Acellular/Viral 

Pneumonia/Acellular/Viral/Coronavirus 

Pneumonia/Acellular/Viral/Coronavirus/COV

Pneumonia/Acellular/Viral/Coronavirus/MER

Pneumonia/Acellular/Viral/Coronavirus/SARS

Pneumonia/Acellular/Viral/Varicella 

Pneumonia/Celullar 

Pneumonia/Celullar/Bacterial 

Pneumonia/Celullar/Bacterial/Streptococcus 

Pneumonia/Celullar/Fungus 

Pneumonia/Celullar/Fungus/Pneumocystis 
ion measures. Therefore, the use of a cross-validation technique is

onditioned to a bigger database, which is a future work target. 

.2. Algorithms, parameters and metrics 

In this subsection we present the main information concerning

he algorithms, parameters and metrics used in the experiments of

his work. 

.2.1. Multi-class classification 

In order to perform the multi-class classification task we have

sed five well-known classifiers from the literature: k-Nearest

eighbots (kNN); Support Vectors Machine (SVM); Multilayer Per-

eptrons (MLP); Dicision Trees (DT); and Random Forests (RF).

able 7 reports the parameter used in these multi-class classifica-

ion algorithms. 

.2.2. Hierarchical classification 

For the hierarchical classification task we used the Clus-HMC

ramework 7 . Clus-HMC was chosen because it is considered in the
ical scenario. 

#Samples #Train #Test 

1000 700 300 

144 102 42 

121 85 36 

121 85 36 

111 78 33 

ID-19 90 63 27 

S 10 7 3 

 11 8 3 

10 7 3 

23 17 6 

12 9 3 

12 9 3 

11 8 3 

11 8 3 
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Table 8 

Clus-HMC execution parameters. 

Parameter Value 

Type Tree 

ConvertToRules No 

HSeparator “/”

FTest [0.001, 0.005, 0.01, 0.05, 0.1, 0.125] 

EnsembleMethod RForest 

Iterations 10 

VotingType Majority 

EnsembleRandomDepth No 

SplitSampling None 

Heuristic Default 

PruningMethod Default 

CoveringMethod Standard 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. F1-Score results per label in the best case scenario for multi-class context. 
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8 https://drive.google.com/open?id=1J9I-pPtPfLRGHJ42or4pKO2QASHzLkkj 
literature as the state-of-the-art hierarchical classification frame-

work [64–66] . 

Clus-HMC is based on Predictive Cluster Trees (PCT) and gener-

ates a single Decision Tree (DT) considering the entire class hierar-

chy. In Clus-HMC, DTs are seen as a hierarchy of clusters where the

root node contains all the training instances, while the remaining

are recursively divided into smaller groups as the hierarchy is tra-

versed towards the leaves. The classification is performed using a

distance-based metric which calculates how similar an instance is

to some tree. The parameter configurations used in the Clus-HMC

algorithm are presented in Table 8 . 

5.2.3. Resampling algorithms 

Regarding the resampling methods, for both classification sce-

narios (multi-class and hierarchical), we have tested a total of 16

methods, considering oversampling, undersampling and hybrid ap-

proaches. However, to avoid visual issues, we report in this work

only the algorithms that somehow improved the classification re-

sults, which are also the same methods presented in Table 1 of this

work, i.e, ADASYN, SMOTE, SMOTE-B1, SMOTE-B2, AllKNN, ENN,

RENN, Tomek Links (TL) and SMOTE+TL. 

5.2.4. Evaluation metric 

In order to analyze the performance of the experimental results,

the F1-Score measure was chosen. Moreover, in order to analyze

the general classification performance, we have chosen the macro-

avg evaluation, which makes an averaging calculation by class. This

is a crucial point in the experimental setup, since evaluation mea-

sures such as accuracy may neglect the real performance of the

learners for the imbalanced classes, which in our case is the main

objective. Following this reasoning, the use of a metric that can re-

ally consider the imbalanceness of the different labels is necessary,

and, according to Goutte et al. [67] , F1-Score is a good alternative

to deal with this issue. 

As well known in the machine learning community, F1-Score

is the harmonic average between precision and recall calculations.

Moreover, we have used the macro-avg F1-Score evaluation in or-

der to calculate the mean F1-Score between the classes and not

the samples. It is important to observe that we have used the same

F1-Score measure in both multi-class and hierarchical classification

scenarios. 

6. Experimental results 

As we have experimentally tested both multi-class and hierar-

chical classification scenarios, we have sub-divided the experimen-

tal results into two subsections: Multi-Class Classification Results

(6.1) and Hierarchical Classification Results (6.2) . 

We must highlight that in the subsections we present the re-

sults considering two perspectives: 
• The general macro-avg F1-Score for the evaluated scenarios, i.e.,

the average F1-Score for all classes in the classification task;

and 

• The F1-Score obtained specifically for the COVID-19 class, given

that this is our main interest here. 

Due to the large number of experimental results (a total of

648 in the Multi-Class scenario and 1712 in the Hierarchical sce-

ario), we have decided to present only the best result achieved in

ach prediction schema. However, it is important to mention that,

s well as the database and scripts, a complete version of the re-

ults is freely available for further analysis 8 . Moreover, in order to

ummarize the results into a unique focal point, in Section 6.3 we

lso present plots summarizing the best of all results for each clas-

ification scenario (Multi-class and Hierarchical). 

.1. Multi-class results 

Table 9 shows the best F1-Score results for the COVID-19 iden-

ification considering the multi-class scenario. The individual pre-

ictions have achieved the same top result as of late fusion method

 ≈ 0.83). Moreover, the MLP classifier is present in the best results

or all the prediction schemas, as well as LPQ feature, which is also

resent in all prediction schemas. 

Table 10 shows the macro-avg F1-Score for the prediction

chemas in the multi-class scenario. The best result was achieved

oth with individual and late fusion schemas ( ≈ 0.65). Here, the

LP classifier also achieved a good performance, which is present

n all schemas with exception of late fusion with top classifiers.

owever, there is no clear predominance in relation to the best

eatures among these schemas. 

Fig. 7 presents a chart of the individual F1-Score results per la-

el for the best case scenario in the multi-class context, which was

chieved using the MLP classifier over LBP features after a resam-

ling using the RENN algorithm. The “SARS” label and the “Nor-

al” label obtained excellent performance with F1-Score 1.0 and

.98 respectively. Moreover, the COVID-19 label also achieved a sat-

sfactory result ( ≈ 0.76). The other labels (MERS, Varicella, Strep-

ococcus and Pneumocystis) reached moderated performances (be-

ween 0.4 and 0.5). 

Fig. 8 presents the confusion matrix for the same best case

cenario in the multi-class classification context presented in

ig. 7 (MLP classifier with LBP feature using RENN resampling

ethod). 

https://drive.google.com/open?id=1J9I-pPtPfLRGHJ42or4pKO2QASHzLkkj
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Table 9 

Best results for COVID-19 label for each prediction schema in the Multi-Class scenario. 

Prediction Schema Feature(s) Classifier(s) Resampling(s) F1-Score 

Individual LPQ MLP ENN or None 0.8333 

Early Fusion LBP & LPQ MLP AllKNN or RENN 0.8000 

Late Fusion (Top-5) LPQ MLP ENN 0.8333 

Late Fusion (Top-Features) BSIF, EQP & LPQ MLP ENN & RENN 0.8333 

Late Fusion (Top-Classifiers) LDN & LPQ MLP & DT SMOTE+TL & ENN 0.8333 

Table 10 

Best macro-avg results for each prediction schema in the Multi-Class scenario. 

Prediction Schema Feature(s) Classifier(s) Resampling(s) F1-Score 

Individual LBP MLP RENN or AllKNN 0.6491 

Early Fusion BSIF & EQP & LPQ MLP TomekLink 0.5563 

Late Fusion (Top-5) LBP MLP AllKNN & RENN 0.6491 

Late Fusion (Top-Features) BSIF & LBP MLP RENN & SMOTE-B2 0.6491 

Late Fusion (Top-Classifiers) LDN & LETRIST DT & KNN-3 RENN or None 0.4500 

Table 11 

Best results for COVID-19 label for each prediction schema in the Hierarchical scenario. 

Prediction Schema Feature(s) Resampling(s) F1-Score 

Individual BSIF SMOTE-B1 0.8387 

Early Fusion BSIF & EQP & LPQ SMOTE or TL 0.8889 

Late Fusion (Top-5) BSIF & OBIF SMOTE-B1 & None 0.8276 

Late Fusion (Top-Features) BSIF & EQP SMOTE-B2 & None 0.8276 

Table 12 

Best macro-avg results for each prediction schema in the Hierarchical scenario. 

Prediction Schema Feature(s) Resampling(s) F1-Score 

Individual LETRIST SMOTE-B2 0.4615 

Early Fusion LBP & INCEPTION-V3 & LETRIST SMOTE-B1 0.5669 

Late Fusion (Top-5) LDN & LETRIST SMOTE & SMOTE-B2 0.4751 

Late Fusion (Top-Features) BSIF & LETRIST SMOTE-B1 & SMOTE 0.4751 

Fig. 8. Confusion Matrix in the best case scenario for the multi-class experiments. 
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.2. Hierarchical results 

Table 11 shows the best F1-Score results for the COVID-19 iden-

ification considering the hierarchical scenario. The best F1-Score

esult for COVID-19 ( ≈ 0.89) was achieved in this context. This re-

ult was reached using the early fusion prediction schema with the

eatures BSIF, EQP and LPQ resampled by either SMOTE or TL al-

orithms. Furthermore, the SMOTE resampling algorithm and BSIF

eatures are present in all these classification schemas. 
Table 12 presents the macro-avg F1-Score results in the hier-

rchical scenario. As well as for the COVID-19 identification, the

est macro-avg F1-Score result was achieved in the early fusion

rediction schema. Furthermore, SMOTE resampling technique also

ppears in all classification schemas. 

Fig. 7 presents a chart of the individual F1-Score results per

abel for the best case scenario in the hierarchical classification

chemas, which was achieved in the early fusion schema with

BP, INCEPTION-V3 and LETRIST features after resampling with the

MOTE-B1 algorithm. It is important to observe that, as we are

ealing with a hierarchical classification problem, the predictions

re made for each label in the hierarchy, thus we have a total of

ourteen hierarchically organized labels. We may also observe that

he classifier achieved very different performances for each type

f pneumonia. While for COVID-19, MERS and Streptococcus, it has

chieved a F1-Score close to 0.7, for Varicella and Pneumocystis the

1-Score was zero. 

Fig. 10 shows the confusion matrix for the same best case sce-

ario in the hierarchical classification context presented in Fig. 9

Early Fusion of LBP, INCEPTION and LETRIST using SMOTE-B1 re-

ampling method). It is worth mentioning that as we are dealing

ith the problem in a hierarchical classification design, the con-

truction of the Confusion Matrix can follow different approaches

hen compared with the ones built in the multi-class classifica-

ion scenarios. In order to build the Confusion Matrix presented in

ig. 10 , we have followed a method used by Buchanan et al. [68] , in

hich we group every label of the hierarchy into the same matrix,

.e., all the internal and leaf label nodes. 

.3. Results Summary 

Fig. 11 presents a summary chart of the best F1-Score results for

he COVID-19 identification in the three classification schemas (in-
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Fig. 9. F1-Score results per label in the best case on the hierarchical scenario. 

Fig. 10. Confusion Matrix in the best case scenario for the hierarchical experiments. 

Fig. 11. Best F1-Score results on multi-class and hierarchical scenarios for COVID-19 

Identification. 

 

 

 

 

Fig. 12. Best macro-avg F1-Score results on multi-class and hierarchical scenarios. 
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dividual, early fusion and late fusion) both in multi-class and hier-

archical classification scenarios. The hierarchical classification out-

performed the multi-class classification in the individual and early

fusion schemas. In addition, the best of all COVID-19 identification

result was achieved by the hierarchical classification learner. 
Fig. 12 presents a summary of the best macro-avg F1-Score re-

ults. We may note that in two (i.e. individual and late fusion) out

f the three schemas, the best result was achieved by far in the

ulti-class classification scenario. Moreover, the best of all macro-

vg F1-Score ( ≈ 0.65) was performed by the multi-class learners

n the individual and late fusion schemas. 

. Discussions 

Aiming to evaluate the obtained results from different points

f view, we guide our discussion in the search for answers to the

ollowing questions: 

• Which feature representation provided the best results? 
• Which base classifier performed better in the multi-class sce-

nario? 
• Which resampling algorithms improved the results the most? 
• Have the fusion strategies contributed to improve the results? 
• Which kinds of labels are easier/harder to predict? 
• Which labels were mixed up in the best case scenario for each

classification schema? 
• What is the impact of the type of classification in the results

for this domain scenario (multi-class versus hierarchical)? 
• What may be happening in the misclassified CXR? 

In the following subsections, we answer each question taking

nto account the statistical significance, when it is suitable. 

.1. Which feature representation provided the best results? 

To answer this question, i.e., define the best feature representa-

ion, we have used the statistical protocol proposed in Charte et al.

69] . With this protocol, we calculate the ranking of the feature in

ach classification scenario based on the Friedman statistical test.

n other words, the features performance are ranked (from first to

ast) and an average rank is calculated for each classification sce-

ario. As we have four different measures contexts, i.e., the macro-

vg of the results and F1-Score for the COVID-19 in the multi-class

nd hierarchical scenarios, we have performed this protocol four

imes, one in each classification context and measure. The test re-

ults in relation to the ranking of the features for the COVID-19

dentification and the macro-avg F1-Score are shown in Table 13 .

t is worth mentioning that, since this test is composed of rank-

ngs, which ranges from the first to the last, the lower the ranking

core is, the better is the performance. 

We can observe that, in the multi-class scenario for COVID-19

dentification, LPQ achieved the best average ranking by far, be-

ng in first place for all scenarios. In the hierarchical context, BSIF

eature achieved the best ranking for the COVID-19 identification



R.M. Pereira, D. Bertolini and L.O. Teixeira et al. / Computer Methods and Programs in Biomedicine 194 (2020) 105532 15 

Table 13 

Ranking of the results per feature set in all classification scenarios. 

Feature Set 

Multi-Class Hierarchical Overall 

Avg. 

Ranking COVID-19 Macro-Avg COVID-19 Macro-Avg 

BSIF 4.00 3.67 1.00 3.00 2.92 

INCEPTION-V3 6.33 5.00 4.67 3.33 4.83 

LBP 4.67 1.33 4.00 3.00 3.25 

LDN 3.00 4.33 4.00 3.00 3.58 

LETRIST 5.33 2.33 2.67 1.00 2.83 

EQP 4.00 5.00 3.33 4.67 4.25 

LPQ 1.00 3.33 3.00 3.00 2.58 

OBIF 3.33 4.33 2.33 3.00 3.25 

Table 14 

Ranking of results per classifier in the multi-class classifica- 

tion scenario. 

Classifier COVID-19 Macro-Avg Overall Avg. Rank. 

KNN 4.67 1.67 3.17 

RF 3.00 4.67 3.83 

SVM 3.67 4.33 4.00 

DT 2.67 3.00 2.83 

MLP 1.00 1.33 1.17 

Table 15 

Ranking of results per resampling method in the classification scenarios. 

Resampling 

Multi-Class Hierarchical Overall 

Avg. 

Rank. COVID-19 Macro-Avg COVID-19 Macro-Avg 

ADASYN 7.67 7.67 4.67 4.00 6.00 

AllKNN 4.33 2.33 5.33 7.33 4.83 

ENN 1.67 4.00 5.33 6.33 4.33 

RENN 3.00 2.33 6.33 6.67 4.58 

SMOTE 6.33 5.00 2.67 1.67 3.92 

SMOTE-B1 5.67 5.00 3.67 1.67 4.00 

SMOTE-B2 7.00 4.67 4.33 2.00 4.50 

SMOTE + TL 6.33 7.33 4.00 3.00 5.17 

TL 3.00 3.33 3.67 5.33 3.83 
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lso with an unanimous first place. Considering the macro-avg re-

ults in the multi-class scenario, the best ranked feature in aver-

ge was LBP (with an average ranking of 1.33), while in the hierar-

hical scenario it was LETRIST also with an unanimous first place.

oreoever, analyzing the overall average ranking, we have LPQ as

he best feature considering all classification contexts and scenar-

os with an overall ranking of 2.58. 

.2. Which base classifier performed better as a whole in the 

ulti-class scenario? 

In order to answer this question, we have used the same sta-

istical protocol used in the first question, but ranking the base

lassifiers instead of features. Thus, in Table 14 we present the

verage ranking per classifier for the COVID-19 identification and

he macro-avg F1-Score, both for the multi-class scenario. It can

e noted that, regardless the classification context, MLP was by far

he best ranked classifier with the lower average overall ranking

1.17). This MLP dominance can be explained by the fact that it

an learn intrinsic characteristics of the problem when given the

orrect amount of features, which should be happening in our ap-

lication domain. 

.3. Which resampling algorithms improved the results the most? 

For this answer, we have used again the same statistical pro-

ocol used in the first two questions. However, in this case, rank-

ng the resampling methods. Table 15 presents the results for this

est in all the classification contexts. We may observe that, in the
ulti-class scenario, ENN resampling method was the most ef-

ective in improving the COVID-19 identification (with an average

anking of 1.67), while for the macro-avg F1-Score, the most ef-

ective resampling methods were AllKNN and RENN, average rank-

ngs of 2.33. In the hierarchical context, the resampling technique

hich, in average, improved the COVID-19 identification the most

as SMOTE, with an average ranking of 2.67. Moreover, for the

acro-avg F1-Score, SMOTE and SMOTE Borderline-1 resampling

ethods were the most effective ones, with average rankings of

.67. 

Another interesting point to observe in the test results shown

n Table 15 is that in an overall average ranking vision, consider-

ng all classification scenarios, Tomek Link (TL) technique was the

ost effective (ranking of 3.83). This result can be explained by

he fact that TL is an undersampling method aimed in the removal

f pair of instances that can cause confusion in the learner, since

hey are labaled with different classes but have similar attribute

alues. Given the domain of application being investigated in this

ork, this is the exact case that can cause drawbacks in the classi-

cation results, since some CXR images are very alike but contains

ifferent types of pneumonia. 

.4. Have the fusion strategies contributed to improve the results? 

Yes, the early fusion strategy was particularly important to pro-

ide better results for the COVID-19 identification in the hierar-

hical scenario. Besides, the early fusion technique also provided

 better macro-avg F1-Score in this same classification scenario.

owever, the late fusion was not able to increase the classification

esults. 

On the other hand, in the multi-class scenario, for the COVID-

9 identification, the best results were obtained both with an in-

ividual classifier and using the late fusion technique. The same

ccurred for macro-avg F1-Score. Thus, in the multi-class classifica-

ion scenario, the fusion was not effective in none of the strategies

early nor late). 

.5. Which kinds of labels are easier/harder to predict? 

In the best case of macro-avg prediction for the multi-class

lassification scenario, Normal, COVID-19 and SARS labels pre-

ented a remarkably better performance compared to the other la-

els. 

The reason why Normal and COVID-19 performed better leans

n the fact that these are the two biggest classes in terms of the

umber of samples in the database. So, the classifiers must have

earned more from their characteristics. Regarding the SARS label,

he MLP classifier probably obtained a good performance because

t could extract the peculiar visual content of the images, which

as a general appearance less dark than the images of the other

abels. 

In the hierarchical classification context, we have much more

abels, since the internal nodes are also considered during the pre-

iction process. In this scenario, we had excellent/good perfor-

ances for Normal, Pneumonia, Acellular, Viral, Coronavirus and

OVID-19 labels. The same justification used in the multi-class sce-

ario can be ruled here, since we have much more samples be-

onging to the Normal and COVID-19 classes. In addition, the Pneu-

onia, Acellular, Viral and Coronavirus labels are also assigned in

he COVID-19 label path during the prediction. The negative point

n the hierarchical classification is related to the Varicella and

neumocystis labels, which had zero F1-Scores in the best macro-

vg scenario. This bad performance may be caused by a general-

zation issue in the classifier, which is made in order to obtain a

etter overall macro-avg result, practically ignoring some difficult

inority classes. 
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Fig. 13. Examples of samples with “COVID-19” label that were predicted as “Nor- 

mal”. 
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7.6. Which labels were mixed up in the best case scenario for each 

classification schema? 

The answer to this question is grounded in the confusion ma-

trices presented in Section 6 (Experimental Results). Looking at the

confusion matrix for the multi-class classification scenario ( Fig. 8 ),

we may observe that six “COVID-19” samples were mixed up

with the “Normal” label. Moreover, two “Streptococcus” samples,

one “Varicella” and one “Pneumocystis” were mixed up with the

“COVID-19” label. Although we do not have a mixed up pattern, it

is interesting to observe that samples from different labels were

mixed up with the “Normal” label. 

On the other hand, looking at the confusion matrix for the hi-

erarchical classification scenario ( Fig. 10 ), we may observe more

details concerning the classifiers mixed ups, since we have inter-

nal labels nodes besides the leaf nodes. In this scenario, we may

observe that nine samples with the “Pneumonia” label were mis-

classified as “Normal”. Moreover, we can also note that “COVID-

19” was mixed up with all the other pathogens in a certain level,

since three “COVID-19” samples were misclassified as “MERS”, four

as “SARS”, two as “Streptococcus” and one as “Pneumocystis”. Con-

cerning the mixed up between the pneumonia pathogens in a high

level, we can observe that four “Viral” samples were mixed up with

“Bacterial” and three with “Fungus”. 

7.7. What is the impact of the type of classification in the results for 

this application domain (multi-class versus hierarchical)? 

Looking at the result tables from Section 6 we can clearly see a

difference between the performances in the multi-class and hier-

archical classification scenarios. At a first glance, we may say that

of course this difference occurs because of the very different clas-

sifiers being applied in each scenario. Nevertheless, we may go

beyond in this analysis. Even though the distinction between vi-

ral and bacterial pneumonia is not relevant enough for the clini-

cal workflows, the hierarchical representation of the problem, pro-

posed here, has shown to be a feasible way to improve the per-
Fig. 14. Different examples of C
ormance on COVID-19 identification. As we have a hierarchical

lassifier (Clus-HMC) being applied to the problem, it was able to

earn relevant information from the hierarchy in order to distin-

uish some types of pneumonia and maximize exactly the label of

reatest interest: COVID-19. 

.8. What may be happening in the misclassified CXR? 

This is probably the most tricky question in this discussion so

ar, since CXR images are not always the medical standard to di-

gnose pneumonia pathogens. Fig. 13 presents two examples of

amples with the “COVID-19” label that were misclassified as “Nor-

al” in the best case scenario of the multi-class classification ap-

roach. In these examples, it is really difficult to identify what

ould make the learner recognize “Normal” patterns instead of

COVID-19”. However, in the following we present other examples

hat can bring some thoughts into the light of this issue. 

In order to give a direction regarding what may be happening

n some of the misclassified CXR cases, we present in Fig. 14 four

xamples of CXR images from “normal” lungs, which were also ex-

racted from RYDLS-20. 

When we think about a “normal” CXR, i.e., a CXR of a person

ithout pneumonia, we may immediately think in a CXR similar

o Fig. 14 a and b, in which the image is pretty clear and we may

ee that there are no white spots whatsoever. However, in practice,

ue to variate factors such as the patient lung characteristics, type

f x-ray scan machine, and even due to the protocol followed by

he professional radiologist which operates the scan machine, there

ight be visual variations between the x-rays captured in this dif-

erent circumstances that still belongs to the same class. Consid-

ring this context, it is common to observe in the database sam-

les from people without pneumonia but with CXR images similar

o the ones presented in Fig. 14 c and d. Thus, given as example

he four samples from Fig. 14 , which belong to the same class but

resent such different characteristics, it is comprehensive that an

rtificial intelligence system, which is based on similarity patterns,

an make recognition mistakes for these images. 

. Concluding remarks and future works 

As the COVID-19 pandemic spreads around the world, the

umber of cases keeps growing exponentially. Finding a method

hat can help in the diagnosis of this disease in people, using a

heap and fast method, is fundamental to avoid overwhelming the

ealthcare system. In this context, the use of machine learning

echniques to identify the pneumonia disease in CXR images has

een proposed in the literature and may help in this diagnosis.

owever, when we are dealing with images taken from patients

tricken of pneumonia caused by different types of pathogens and

e are trying to predict a specific type of pneumonia (in this

ase, COVID-19), the problem turns into an even more challenging

ask. 
XR with “normal” lungs. 



R.M. Pereira, D. Bertolini and L.O. Teixeira et al. / Computer Methods and Programs in Biomedicine 194 (2020) 105532 17 

 

b  

a  

b  

e  

C  

w  

m  

a  

u  

b  

i  

f  

f  

d  

f  

o  

m  

n

 

a  

o  

a  

P  

a  

f  

o  

e  

N

 

S  

i  

p  

t  

n  

t

 

o  

n  

s  

o  

0  

t  

m  

p  

t  

C

 

1  

i  

h  

s  

t  

w  

n

 

a  

d  

a  

v  

t  

e  

i  

m  

s

D

 

c  

i

A

 

t  

N  

(  

(  

C  

d

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  
In a real world context, we have many more people unaffected

y pneumonia than affected. In addition, there is a natural imbal-

nce between the number of people stricken of pneumonia caused

y different pathogens and, furthermore, it is each time harder to

stimate the precise imbalance between these numbers, due to the

OVID-19 outbreak. Considering a realistic scenario, in this paper

e have proposed a classification schema, aiming to classify pneu-

onia disease caused by different pathogens in CXR images, and

lso to identify COVID-19 among them. In the proposed schema we

se resampling techniques in order to deal with the intrinsic im-

alanceness issue of the problem. Moreover, the proposed schema

s composed of eight different feature sets, which are extracted

rom the images and tested as individual and combined in an early

usion design. Besides, the prediction outputs are also tested in-

ividually and in a late fusion design. The proposed schema also

oresee the use of flat (multi-class) and hierarchical classifiers. In

rder to apply hierarchical classification into this application do-

ain, we have considered a tree taxonomy in which the pneumo-

ia are hierarchically organized. 

In order to test the proposed classification schema, we have

lso proposed the RYDLS-20 database. The database is composed

f 1144 CXR images from seven classes: Normal lungs and lungs

ffected by COVID-19, MERS, SARS, Varicella, Streptococcus and

neumocystis. The dataset is highly imbalanced, with 10 0 0 im-

ges being from people unaffected by pneumonia, 90 of people af-

ected by COVID-19 and the rest almost equally divided among the

ther pathogens. The CXR images were obtained from three differ-

nt sources: Dr. Josepth Cohen GitHub repository; Radiopedia; and

IH dataset. 

The proposed classification schema achieved a macro-avg F1-

core of 0.65 using a multi-class approach with MLP classifier us-

ng the LBP feature set and resampled with ENN. Furthermore, the

roposed schema was also able to achieve a F1-Score of 0.89 for

he COVID-19 identification in the hierarchical classification sce-

ario using the early fusion combination of BSIF, EQP and LPQ fea-

ures resampled with SMOTE+TL. 

It is not fair to make a direct comparison of identification rates

btained in out work and others from the literature, as they are

ot even necessarily evaluated on the same dataset and under the

ame circumstances. However, we can remark that, to the best

f our knowledge, the best identification rate obtained here (i.e.

.8889 of F1-Score) is the best nominal rate ever obtained for the

ask of COVID-19 identification in an unbalanced environment with

ore than three classes. Moreover, we must highlight the novel

roposed hierarchical classification approach considering different

ypes of pneumonia, which lead us to the best recognition rate for

OVID-19 in this work. 

Even though this proposal does not provide a definitive COVID-

9 diagnosis, and this is not the purpose of this work, the good

dentification rate achieved for COVID-19 can be quite useful to

elp the screening of patients in the emergency medical support

ervices, that has been severely affected by the pandemic break-

hrough. The main virtue of this work is to point out a promising

ay, although we know that new results must be investigated with

ew and more robust databases. 

As future work, we hope to build a larger database so we can

pply more sophisticated Deep Learning techniques with proper

epth into the samples. Besides, with a larger database, we can

lso test our proposed schema in a bigger scale and with a cross-

alidation approach, providing a robust vision of our proposal into

he problem. Moreover, other approaches can be used in the hi-

rarchical classification task, such as the use of Local Classifiers

nstead of a Global Classifier. The extraction of other feature sets

ay be also experimentally tested into our proposed classification

chema. 
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